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Summary

The Aeroassist Flight Experiment (AFE) uti-
lizes a 14-ft-diameter raked and blunted elliptic cone
as a vehicle to carry instrumentation for approxi-
mately 12 experiments on a Shuttle-launched flight.
The flight is to obtain aerodynamic and aerothermo-
dynamic data for blunt bodies with velocities near
32000 ft/sec at altitudes above 245000 ft. A pre-
flight ground-based test program was initiated to
provide calibration data for computational fluid dy-
namics (CFD) codes that will be used in flight pre-
dictions. The data reported here are results from a
part of that test program.

Static longitudinal aerodynamic coefficients, lift-
to-drag ratio, and shock shapes were obtained with
two model sizes of the AFE configuration with an-
gles of attack from -10 ° to 10% The effects of Mach
number, Reynolds number, and normal-shock den-
sity ratio were examined by testing in two air wind
tunnels at Mach 6 and Mach 10 and in one tetra-

fluoromethane (CF4) wind tunnel at Mach 6. The
experimental data were compared with predictions
provided by an inviscid flow computer code, HALIS.

Changes in Mach number from 6 to 10 in air or in
Reynolds number by a factor of 13 have little effect
on the aerodynamic coefficients, shock shapes, or lift-
to-drag ratio. Changes in density ratio across the
normal shock from approximately 5 (air) to 12 (CF4)
have a strong effect on aerodynamic coefficients and
shock detachment distance, but not on lift-to-drag
ratio. The tests in air indicate that the configuration
is longitudinally stable and self-trimming at an angle
of attack of 3.5 °. The CF4 results indicate more
stability at angles of attack less than 5° and a trim
angle of -1 °. The lift-to-drag ratio in air or CF4 is
0.29 at an angle of attack of 0° and is linear with
angle of attack over the range from -10 ° to 10°. A
variation in sideslip angle from 0° to 4 ° has little
effect on the longitudinal aerodynamic coefficients or
lift-to-drag ratio. The predictions are, for the most
part, in very good agreement with the measurements.
Tests in CF4 provide a better simulation of predicted
flight results than do tests in air.

Introduction

Future space transportation systems will include
space transfer vehicles (STV's) to ferry cargo to and
from high-Earth orbit (for example, geosynchronous
orbit) and low-Earth orbit where the Space Shuttle
and Space Station Freedom will operate. (This class
of vehicle was formerly referred to as orbital transfer
vehicles, or OTV's.) Studies have shown that upon
return to low-Earth orbit, the STV can carry a heav-
ier payload when decelerated by drag during a pass

through the Earth's upper atmosphere than when de-
celerated by retro-rockets, which require more fuel

(ref. 1). The STV's designed to use the Earth's at-
mosphere for deceleration are generally referred to as
aeroassisted space transfer vehicles, or ASTV's (for-
merly AOTV's). Much more information about very
high-altitude, high-velocity flight is needed, however,
before an actual ASTV can be optimally designed.
Preparations are underway to conduct a flight ex-
periment in which a 14-ft-diameter, simulated ASTV
configuration with approximately 12 onboard exper-
iments will be launched from the Space Shuttle and
accelerated back into the atmosphere with a rocket.
This Aeroassist Flight Experiment (AFE) will make
a sweep through the atmosphere down to an alti-
tude of about 245000 ft with a velocity of nearly
32000 ft/sec to gain aerodynamic and aerothermal
information and then return to low-Earth orbit where

it will be retrieved by the Space Shuttle.

The flight experiment has been proposed be-
cause the high-velocity, low-density flow environment
cannot be duplicated or simulated in present test

facilities nor accurately predicted by existing com-
putational techniques. The AFE will provide an ex-
perimental data base for validation and refinement of
current computational fluid dynamics (CFD) codes
to be used in future ASTV designs. The flight data
will also be useful for validation of procedures .used
to extrapolate wind-tunnel data to flight conditions.
However, the AFE itself requires a data base for pre-
diction of its flight characteristics; and present test
facilities, in conjunction with the best available CFD
codes, must provide this information. A preflight
test program in ground-based hypersonic facilities
(ref. 2) was initiated to develop an aerodynamic and
aerothermodynamic data base to provide calibration
data for the most recent CFD computer codes. Pre-
dictions from one of these codes are compared with
the experimental data in this paper. The experimen-
tal results presented herein are a part of the ground-
based test program. Other results are presented in
references 3, 4, 5, and 6. The details of the rationale
for the flight experiment are outlined in reference 7,
and the set of experiments to be performed is de-
scribed in reference 8.

This paper addresses the effects of normal-shock
density ratio on shock shapes (including detachment
distances) and aerodynamic characteristics of the
AFE configuration at incidence in Mach 6 flow by
using tetrafluoromethane (CF4) and air as test gases.
During the continuum-flow portion of the flight,
the AFE vehicle is expected to experience thermo-
chemical equilibrium values of normal-shock density
ratio in the neighborhood of 17, whereas air or nitro-
gen hypersonic wind tunnels produce ratios of about
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5 to 7. In flight, this large density ratio results from
dissociation of the air as it passes into the high-
temperature shock layer. This "real gas" effect has

a significant impact on shock detachment distance,
distributions of heating and pressure, and aero-
dynamic characteristics (ref. 9). The Langley Hy-
personic CF4 Tunnel provides a simulation of this
phenomenon by producing a density ratio of about
12 across the shock. The Langley 20-Inch Mach 6
Tunnel provides a density ratio of 5.2 in air at compa-
rable Mach number and Reynolds number; thus data
for code calibration are provided that include the ef-
fects of density ratio. Tests were also conducted in
Mach 10 air toverify that the data are independent of

significant differences in Mach numbers and Reynolds
numbers for the very blunt AFE configuration in hy-
personic continuum flow.

Predictions included herein were provided by
Mr. James K. Weilmuenster of the Space Systems
Division, Langley Research Center.

Symbols

axial force coefficient, Axial force
qocS

pitching moment coefficient, Pitching moment
qoo Sd

ACm/A_ taken between (_ = ±2 °, per deg

normal force coefficient, Normal force
qocS

model base height in symmetry plane
(fig. 5), in.

aerodynamic lift-to-drag ratio

Mach number

pressure, lbf/in 2

free-stream dynamic pressure, lbf/in 2

Reynolds number

model base area, in 2

temperature, °R

velocity, ft/sec

moment transfer distance (fig. 3), in.
(1.673 in. when d = 3.67 in., and 1.599 in.
when d = 2.50 in.)

geometric stagnation point of model (fig. 5)

abscissa for shock shape plots (fig. 5)

ordinate for shock shape plots (fig.5)

moment transfer distance (fig. 3), in. (0.129
in. when d = 3.67 in., and 0.099 in. when

d = 2.50 in.)

B

O

RP

t

2

angle of attack, deg

/3 sideslip angle, deg

7 ratio of specific heats

p density, lbm/ft 3

Subscripts:

balance

model geometric stagnation point

rake-plane center

stagnation conditions

free-stream conditions

conditions immediately behind normal
shock

AFE Configuration

The AFE flight vehicle will consist of a 14-ft-
diameter drag brake, an instrument carrier at the
base, a solid rocket propulsion motor, and small con-
trol motors. A sketch of the vehicle is shown in fig-
ure 1. The drag brake (fig. 2), or forebody configu-
ration, is derived from a blunted elliptic cone that -
is raked off at 73° to the centerline to produce a =

circular raked plane. A skirt having an arc radius
equal to one-tenth of the rake-plane diameter and an ;
arc iength_corresponding to 60° has been attached to --
the rake plane in an attempt to reduce aerodynamic
heating around the base periphery. The blunt nose
is an ellipsoid with an ellipticity of 2.0. The ellipsoid
nose and the skirt are tangent to the elliptic cone
surface at their respective intersections. The half an-
gle Of the original elliptic cone is 60 o in the vehicle

symmetry plane. Notice in figure 2 that the angle of _
attack referred to in this paper is with respect to the -
axis of the original elliptic cone. A detailed descrip-
tion of the forebody analytical shape is presented in
reference I0.

Apparatus and Tests

Facilities

Langley M-Inch Mach 10 Tunnel The Langley
31-Inch Mach 10 Tunnel expands dry air through a
three-dimensional contoured nozzle to a 31- by 31-in.
square test section to achieve a nominal Mach num-
ber of 10. The air is heated to approximately 1850°R
by an electrical resistance heater, and the maximum
reservoir pressure is approximately 1500 lbf/in 2.
The tunnel, formerly referred to as the Langley
Continuous-Flow Hypersonic Tunnel, is presently op-
erated in the blowdown mode with nominal run times
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of up to 60 sec. Because of the side-mounted tur-
ret that allows model changes during tunnel oper-
ation in the continuous-flow mode, only one test-
section window is available and the facility is not
presently equipped with a schlieren system. Force-
and-moment data can be obtained through a range of
angle of attack during one run by utilizing the pitch-
pause capability of the model support system. This
tunnel is described in more detail in reference ll.

Langley 20-Inch Mach 6 Tunnel. The Langley
20-Inch Mach 6 Tunnel is a blowdown wind tunnel

that uses dry air as the test gas. The air is heated to a
maximum temperature of approximately l l00°R by
an electrical resistance heater; the maximum reser-

voir pressure is 525 lbf/in 2. A fixed geometry, two-
dimensional contoured nozzle with parallel sidewalls
expands the flow to Mach 6 at the 20- by 20-in. square
test section. Two 16.5-in.-diameter clear tempered
glass windows are located on opposite sides of the
test section. A vertical reference line is located at one

window for verification of angle of attack in schlieren
photographs. The model injection mechanism allows
angle-of-attack adjustments during a test. Test du-
rations are usually 60 to 120 sec, although longer
times can be easily attained by connection to aux-
iliary vacuum storage. A description of this facility
and calibration results are presented in reference 12.

Langley Hypersonic CF4 Tunnel. The Lang-
ley Hypersonic CF4 Tunnel is a blowdown wind tun-

nel that uses tetrafluoromethane (CF4) as the test
gas. The ratio of specific heats of CF4 is approx-
imately 20 percent lower than air. The CF4 is
heated to a maximum temperature of 1530°R by two
molten-lead-bath heat exchangers connected in par-
allel. The maximum pressure in the tunnel reser-
voir is 2600 lbf/in 2. Flow is expanded through an
axisymmetric, contoured nozzle designed to gener-
ate a Mach number of 6 at the 20-in.-diameter exit.

This facility has an open jet test section with two
24- by 30-in. clear tempered glass windows on oppo-
site sides. A vertical reference line is located at one

window for verification of angle of attack in schlieren
photographs. Run duration can be as long as 30 sec,
but 10 sec is sufficient for most tests because the

model injection system is not presently capable of
changing angle of attack during a run. A detailed
description of the CF4 tunnel and calibration re-
sults are presented in reference 13. The calibration
data indicate a disturbance in pitot pressure at the
test-stream centerline. A 4-in.-diameter hemisphere
pressure-distribution model tested 3 in. off centerline
produced excellent agreement with theory, however.

Consequently, it is standard procedure to test in this
off-centerline location.

Models

Two aerodynamic models were fabricated and
tested. The models were identical except for size;
the base heights d (fig. 2) at the symmetry plane were
3.67 in. (2.2 percent scale) and 2.50 in. (1.5 percent
scale). A photograph of one of the models is shown
in figure 3 along with a sketch that provides infor-
mation pertinent to the aerodynamic tests. Notice
that the moment reference center is at the rake-plane
center--a position that is convenient to locate in
computer codes. The flight vehicle center of gravity
may be somewhat aft of this position. Each model is
made in three parts: a stainless steel forebody (aero-
brake), an aluminum afterbody (instrument carrier
and propulsion motor), and a stainless steel balance
holder. The forebody was machined to the design
size and shape within a tolerance of ±0.003 in. The
balance-holder axis is parallel to the original cone
axis. Although stainless steel subjects the balance to
a greater tare weight than aluminum, steel was cho-
sen as the forebody material because of its lower ther-
mal conductivity and resistance to abrasion. Heat
penetration through the blunt, shallow forebody can

result in thermal gradients across the balance sensing
elements, thereby compromising the calibration. The
balances were water cooled and provision was made
for an air gap between the balance forward end and
the holder cavity surface to further reduce heat trans-
fer. The models were fabricated with a cylindrical
instrument carrier and a simulated propulsion mo-
tor. Because of recent redesign, the model afterbody
differs from the current flight configuration. The in-
strument carrier is now a hexagonal shape to bet-
ter accommodate instrumentation attachment, and
the propulsion motor will be jettisoned after firing to
avoid base-flow contamination.

Two shrouds (fig. 4) were built to shield the
balance from base-flow closure. The first shroud is

used when the afterbody is attached and the second
when the afterbody is removed. The shrouds attach
to the sting, and clearance is provided to avoid
interference with the balance and model movement

when forces or moments are applied.

Instrumentation

Aerodynamic data. Aerodynamic force-and-
moment data were measured with water-cooled,
strain-gage balances. Two thermocouples were in-
stalled in the water jacket surrounding the measur-
ing elements to monitor internal thermal gradients.
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Existing Langley balances were used to expedite test-

ing. The load range for each component of the two

balances (one for each model size) is presented in
table I.

Shock shape data. To obtain schlieren photo-

graphs for shock shapes, z-type, single-pass mirror

systems were used in both the Mach 6 air and Mach 6

CF 4 test facilities. Images were recorded on black

and white fihn. All film was developed and enlarged
to 8- by 10-in. prints.

Test Conditions and Test Matrix

The tests were conducted at nominal free-stream

Mach numbers of 6 and 10 in air, and at Maeh 6

in CF4. Nominal test conditions are presented in

table II. Angles of attack were varied from 10 ° to

-10 ° with sideslip angle/3 at 0 °. A number of tests
were conducted at both Mach 6 and 10 in air with

/_ = 2° and 4°. A limited number of tests were run

used to define the origin of the coordinate system

(fig. 5). An optical sighting device was used to lo-

cate and record approximately 70 points along each

shock, corresponding to a step size of approximately
0.06 in. on the photograph. The silhouette of the

model symmetry plane was also digitized from the
schlieren photograph and recorded in the same man-
ner as the shock and ill the correct relation to the

shock. The digitized data from each photograph were

stored in an individual computer file and later plotted

by a graphics plotter. An indication of the accuracy

of the process can be seen in figure 6, where at the

smallest standoff distance (near the stagnation point)

repeatability is within approximately 5 percent and
is better at larger standoff distances.

Aerodynamics

Each of the three test facilities has a dedicated

in CF4 with fl = 3.5 °. All the shock shape data were stand-alone data system. Output signals from the

taken at fl = 0 °. The afterbody was removed for balances were sampled and digitized by an analog-

some tests in CF4. Both model sizes were tested in to-digital converter and stored and processed by a

CF4 and in air at Mach 10. Only the 3.67-in. model
was tested in air at Mach 6.

Test Procedures

In the Langley Hypersonic CF4 Tulmel, tile model

was mounted at the desired angle of attack and

sideslip prior to the run. After the test-stream flow
was established, the model was injected to a location

3 in'. off the test-stream centerline (see "Facilities"
section) where data were gathered for approximately
5 sec before the model was retracted. In either of the

two air tunnels, the model was mounted at angles of
attack and sideslip of 0° prior to the run. After test-

stream flow was established, the model was injected
to the stream centerline and then pitched to the

next angle of attack (or angle of sideslip) by the
pitch-pause mechanism. Data were taken while the

model was stationary at each angle of attack and/or

sideslip.

Data Reduction and Uncertainty

Shock Shapes

Shock shapes in the model symmetry plane were

obtained from 8- by 10-in. black and white schlieren

photographs. Each photograph was mounted on a
plotter so that the AFE base was vertical as required

by the digitizing program. To account for any vari-

ations in model size on the photographs, the model

base height was measured from each photograph and

entered into the digitizing program for use as a ref-

erence length. The geometric stagnation point was

computer. The rates at which the analog signals were
sampled were 50 per second in the CF4 and Mach 10

air tunnels, and 20 per second in the Mach 6 air

tmmel. A single value of data reported herein rep-

resents an average of values measured for 2 sec in

the CF4 and Mach 6 air tunnels, and for 0.5 sec in
the Mach l0 air tunnel. Corrections were made for

model tare weights at each angle of attack and for :
interactions between different elements of the bai- --

=
ances. Corrections were not made for base pressures. _
Output signals were related to forces and moments
by a laboratory calibration that is accurate to within

+0.5 percent of the rated load for each component. __

The moments about the model rake-plane center re-

ported herein have greater uncertainty than those _

measured at the balance moment center. The pitch-

ing moment at the balance has only the +0.5 percent
of rated-load uncertainty, whereas the moment at the

rake-plane center also includes uncertainties associ-

ated with the forces included in the transfer equation.
The transfer equation is

(Pitching moment)R P = (Pitching moment)B

- (X) (Normal force) - (Z) (Axial force)

where the subscripts RP and B denote tile rake-plane

center and the balance moment center, respectively. -

The transfer distances X and Z are defined in fig- __

ure 3. In coefficient (C) form, the uncertainties (A) _
related to balance calibration are



AC i = 4- (0.005) (Force rating)/
Sq_c

for force i,

ACm,B = + (0.005) (Moment rating)
S dqoo

for pitching moment at balance, and

ACtoR P -_- "Jr"

2

for pitching moment at the rake-plane center.

All the terms include the free-stream dynamic pres-
sure in the denominator so that the uncertainties are

less at test conditions where q_c is large, that is,
at higher Reynolds number than at lower Reynolds
number. The smaller balance could not be used with-

out overloading some of the components at higher
Reynolds number operation, however. Balance re-
lated uncertainties in the data presented herein are
tabulated in table III.

Prediction

Aerodynamic coefficients and shock shapes were
computed for a limited number of cases for compar-
ison with the measured data. The predicted val-
ues were obtained from solutions of the Euler equa-
tions by the inviscid flow-field computer code HALIS
(ref. 14). The HAMS (High Alpha Inviscid Solu-
tion) code is a time-asymptotic solution of the Euler
equations, where the solution space is the volume
between the body surface and the bow shock wave
that is treated as a time-dependent boundary. The
code will handle arbitrary perfect gases (constant ra-
tio of specific heats) or real gases in thermodynamic
equilibrium. Test-stream flow conditions were used
as inputs to HAMS, and free-stream pressure was
used for base pressure. For the CF4 computations,
the program was modified to include the thermody-
namic properties of CF 4 (ref. 15). The wind-tunnel
and numerical model geometries were the same ex-
cept for the region downstream of the aft corner. The
numerical model was modified to prevent the onset of
computational instabilities due to expansion of flow
around the aft rim of the skirt. The modification

was a cylindrical extension rearward from the skirt
(ref. 14 and fig. 7).

Results and Discussions

Shock Shape

Typical schlieren photographs for tests in
CF4 (P2/P_c = 11.7) and in air (P2/P_c = 5.2) are
shown in figure 8. The shock shapes for both CF4
and air at Mach 6 are presented for c_ = 0°, +5 °,
and +10 ° in figure 9. As observed in figure 9, a
factor of 2 increase in density ratio significantly de-
creases the shock detachment distance. For example,
at c_ = 0 °, the shock detachment distance at the stag-
nation point in CF4 is less than half the distance in
air. In CF4, an inflection in the shock is observed
near the ellipsoid-cone juncture, which indicates a
flow overexpansion process. This inflection is more
pronounced at lower angles of attack (fig. 9(e)). In
reference 6, measured pressure distributions over the
AFE forebody at the same conditions also revealed
the overexpansion; hence, the density ratio can

also be expected to significantly influence the aero-
dynamic characteristics of the configuration. The ef-
fect of angle of attack on shock shapes in Maeh 6 air
is summarized in figure 10 and in Mach 6 CF4 in fig-
ure 11. The detachment distances are gi_eater (over
most of the body) at a = 10° and decrease as a de-
creases to -10 °. This is expected because the body
presents a more blunt cross section to the oncoming
flow as c_ increases and at a = 10° appears simi-
lar to a flat-faced cylinder where the flow is subsonic
over the cylinder face. No effect of Reynolds number
on shock characteristics was observed for the range
available in these tests, shown for air in figure 12 and
for CF4 in figure 13.

Predicted shock detachment distances obtained

with the HALIS code and shown in figure 14 for air
and figure 15 for CF4 are observed to be in very good
agreement with measurement over the face of the
forebody. The density ratio in flight is expected to
be even greater than that obtained in the CF 4 tests.
With the assumption of equilibrium chemistry and
continuum flow (near perigee), HALIS was also used
to predict the shock detachment distance in Mach 31
flight. This result is compared to the air and CF4
data in figure 16, where the predicted flight detach-
ment distance is observed to be much less than the

CF4 data. Rarefied and nonequilibrium flow effects
not addressed by HAMS, but expected in flight, will
tend to increase the detachment distance, however
(see, for example, ref. 16). The flight shock detach-
ment distance is important because it will influence
radiant heating by determining the volume of radi-
ators and their proximity to the surface. Further-
more, convective heating would also be expected to
vary with detachment distance because of differences
in flow chemistry (ref. 7).
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Aerodynamics

_le aerodynamic data from Mach 10 air tests
are tabulated for four test conditions in tables IV

through VII. The Mach 6 air results are presented
in tables VIII and IX, and the Mach 6 CF4 results
in tables X and Xi. The test Reynolds number and
model used to obtain the data are indicated in each
table title.

The aerodynamic coefficients CA, CN, and Crn
and the lift-to-drag ratio L/D for a range of Reynolds
number in Math 10 air are presented as a function of
angle of attack in figure 17. The balance uncertain-
ties from table III are also shown. Within the range

of measurement uncertainty, the coefficients and L/D
show no significant effect of Reynolds number. The

data obtained at Re2, d -- 17660 have the least un-
certainty and therefore are considered the best rep-
resentation of the Mach 10 air results. The coeffi-

cients and L/D were computed for Mach 10 air at
5 angles of attack (0 °, -t-5°, and +10 °) with HALIS.
A curve has been faired through the computed data
to make them more distinguishable. These inviscid
predictions of Crn and L/D are shown in figure 17
to agree with measurements, but CA and CN are
underpredicted by about 5 percent for angles of at-
tack greater than approximately -5 ° .

The Mach 6 air results are compared with
Mach I0 air results in figure 18. All data in fig-
ure 18 were obtained with the 3.67=in. model. As

expected, the comparison reveals no effect of Mach
number within this range (ref. 17). Although the
Mach 6 data taken at the lowest Reynolds number
test condition indicate a large uncertainty band, the
results are in good agreement with the other data.
Apparently that uncertainty estimate is too conser-
vative.

The effect of density ratio across the normal shock

on the aerodynamic coefficients and L/D is shown in

figure 19. Although the effects of 2tl_c and Re2,d have
been shown previously to be insignificant, these pa-
rameters were made approximately equal for the two
sets.of data in figure 19. The effects of density ratio
on aerodynamic coefficients are shown to be signifi-
cant for angles of attack greater than approximately
-5 °. The coefficients CA and CN are affected by
P2/Poc proportionately, however, since L/D is not
affected. Predictions from the HALIS code are in-

cluded for both sets of data. The predicted data
are in very good agreement with the experimental
data except for the air results where the code under-

predicts CA and CN measurements by approximately
5 percent.

The wind-tunnel results in CF4 are believed to
be a better simulation of flight data since the shock

detachment distance is closer to the distance pre-
dicted for flight than it is in air (fig. 16). Early
systems analysis (ref. 18) and control requirements
(ref. 19) for the configuration assumed trim at a = 0 °
with L/D = 0.30. The present results reveal that
the trim angle varies from -1 ° to 4° as the den-
sity ratio varies from 5 to 12, but as mentioned
previously L/D is nearly independent of density ra-

tio. The present study indicates that L/D = 0.29
at o_ = 0 ° and that there is a linear relationship

with angle of attack. A good estimate of L/D at
any c_ within -10 ° <: a _< 10° can be obtained
from L/D = 0.290 - 0.015a, where a is in degrees.
Since the trim angle depends on P2/P_c, the value of
L/D at trim will, of course, also depend on P2/P_c.
The negative slope of the pitching moment coeffi-
cient (Crn,) indicates that the configuration is lon-
gitudinally stable about the rake-plane center. The
CF4 data indicate a greater stability (more negative
slope) than the air data for c_ less than 5°. The val-
ues of Cm_ in air and CF4 are -0.0018 and -0.0029
per degree, respectively. In reference 14, the HALIS
code was used to compute Cm as a function of (_ for

the flight near perigee, assuming continuum flow in
chemical equilibrium. The predicted Cm for flight
(fig. 19(c)) is only slightly larger in magnitude than
the CF4 wind-tunnel data, and the slopes are nearly
equal except for a > 5°. In reference i4, the change
in slope for CF4 at a > 5 ° (see fig. 19(c)) is attributed
to the change in extent of the subsonic region over the

forebody face with increasing c_. The predicted flight
trim angle is only slightly greater than 0 °, which is
in much better agreement with the CF4 wind-tunnel
data than with the air wind-tunnel data.

To evaluate the effect of afterbody, tests were =
conducted with the afterbody both attached and re-
moved in CF4 with the same model, balance, and test

conditions. A comparison of the results in figure 20
indicates that the longitudinal coefficients and L/D
are identical with the afterbody on or off. The after-
body is shielded from the flow at hypersonic speeds
and therefore does not affect the vehicle aerodynam-
ics. Consequently, the data presented should repre-
sent the current vehicle with modified afterbody.

A number of tests were conducted with sideslip
angles other than 0% These results are tabulated in
tables XII and XIII for Mach 10 air, in tables XIV
and XV for Mach 6 air, and in table XVI for CF4.
Tests in air were with /3 = 2° and 4 ° (negative an-
gles at Mach 6) and in CF4 withfl = 3.5 ° . These
tests were with three angles of attack (0 °, -t-5°) in
air, and with five angles of attack (0 °, 4-5°, 4-10 °) in
CF4. Comparisons of these data with the data for

= 0 ° are shown in figure 21 for Mach 6. Sideslip
angle apparently does not have a significant effect
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on the longitudinalcoefficientsor LID within the
range of these results. The data do indicate a slight
but consistent decrease in CA with increasing/3 for
-5 ° <_ _ _< 5°; it is within the range of uncertainty,
however. An attempt was made to measure lateral

stability characteristics, but the results were incon-
clusive. Two factors impeded the attempt: (1) loads
were small relative to the balance lateral elements,

even though these elements are quite sensitive in
comparison to the longitudinal elements; and (2) in-
ertia loads imparted by the model injection system
tended to shift the output of the balance lateral el-
ements in an unpredictable way. This was particu-
larly true for the side-mounted injection system in
the Mach 10 tunnel.

Concluding Remarks

Forces, moments, and shock shapes were mea-
sured with two model sizes of the AFE configuration.
Tests were conducted in two air wind tunnels at Mach
numbers of 6 and 10 and in a CF4 wind tunnel at a
Mach number of 6. An inviscid-flow computer code

was used to predict the aerodynamic characteristics
and shock shapes at the wind-tunnel test conditions.
The results lead to the following concluding remarks.

Changes in Mach number from 6 to 10 in air or in
Reynolds number by a factor of 13 have little effect
on the aerodynamic coefficients, shock shapes, or lift-

to-drag ratio. Changes in density ratio across the
normal shock from approximately 5 (air) to 12 (CF4)
have a strong effect on aerodynamic coefficients and
shock detachment distance, but not on lift-to-drag
ratio. The predictions are, for the most part, in very

good agreement with the measurements. Tests in
CF4 provide a better simulation of predicted flight
results than do tests in air. The tests in air indicate

that the configuration is longitudinally stable and
trimmed at an angle of attack of 3.5 °. The CF4
results indicate more stability at angles of attack less

than 5° and a trim angle of -1 °. The lift-to-drag
ratio in air or CF4 is 0.29 at an angle of attack of
0° and is linear with angle of attack over the range
from -10 ° to 10°. Because trim angle is a function

of density ratio, the value of lift-to-drag ratio at trim
is also a function of density ratio. A variation in

sideslip angle from 0° to 4° has little effect on the
longitudinal aerodynamic coefficients or lift-to-drag
ratio.

NASA Langley Research Center
Hampton, VA 23665-5225
September 29, 1989
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TableI. LoadRatingsfor BalancesUsedin AFE Tests

Loadrating

Modelsize,in. Normal,lbf Axial, lbf Pitch,in-lbf
3.67 35 80 35 ...........
2.50 5 10 5

TableII. NominalTestConditions

ae_x_

ft-1

0.63 x 106

2.21 x 106

0.30 x 106

.46 x 106

0.25 x 106

.54 x 106

1.09 x 106

2.10 x 106

Pt, ft/sec I qoc,lbf/in2 ]

Langley 20-Inch Mach 6 Tunnel; air test gas

o oj126 910 .084 112.5 5.94 3095 2.10 5.2

Langley Hypersonic CF4 Tunnel; CF4 test gas

oTollooloo2o3oolo24L2 5ooo3j,l 
1500 1160 .039 292 6.29 2844 .95 11.7

Lan_ey 31-Inch Mach 10 _nnel; air test g_

150 1800 0.0045 97.4 9.55 4624 0.29 6.0

350 1835 .0095 96.9 9.74 4679 .63 6.0

700 1810 .0175 91.7 9.90 4651 1.20 6.0

1450 1830 .0324 90.5 10.05 4689 2.29 6.0

ft -] lb/in 2 °R

1.00 x 105 1.00 [ 845 1.40

3.52 x 105 3.86 [ 910 1.40

0.97xi06 1.23 11150 11.111.48x 106 1.86 i150 i.ii

0.211 x 106 0.54 1800 1.34

.447x 106 1.17 1835 '1.34

.866x 106 2.23 1810 1.34

1.626 x 106 4.25 1830 1.34

Table III. Balance-Related Uncertainties in Experimental Longitudinal Aerodynamic Coefficients

Uncertainty

Re2, d d, in. ACA, 4- ACN, 4- ACre, -4-

Mach 10 air

4,030 2.50 0.0357 0.0180 0.0136

9,900 2.50 .0163 .0081 .0062

17,660 2.50 .0085 .0043 .0032

49,830 3.67 .0165 .0072 .0040

Mach 6 air

51,470 3.67 0.0180 0.0079 0.0042

30,420 3.67 .0725 .0317 .0170

Mach 6 CF4

45,260 3.67 0.0401 0.0176 0.0094

30,830 2.50 .0106 .0053 .0040



Table IV. Measured Aerodynamic Coefficients in Air at Mach 9.55

[Reoo = 0.23 x 106/ft; Re2,d = 4.03 x 103; d = 2.50 in.; and/3 = 0°]

a, deg qoc, psi CA CAr Cm L/D

o.o233 .....-9.9
-8.0
-5.9
-4.9
-3.9
-1.9

.2
2.1
4.0
5.2
6.1
8.2

10.1

0.280
.280
.281
.283
.284
.284
.285
.285
.285

.284

.284

.284

.284

1.176
1.230
1.275
1.286
1.307
1.323
1.346
1.349
1.364

1.360
1.365
1.368
1.382

0.279
.310
.331
.340
.348
.351
.400
.399
.412
.418
.430
.438
.443

.0177

.0196

.0165

.0182

.0131

.0077

.0014

.0002

-.0064
-.0087
-.0152
-.0159

0.430
.406
.373
.358
.340
.302
.294
.257
.227
.211
.201
.169
.134

Table V. Measured Aerodynamic Coefficients in Air at Mach 9.74

[R%c = 0.57 x 106/ft; Re2, d = 9.90 × 103; d = 2.50 in.; and/3 = 0°]

a, deg q_, psi CA CN Cm

01284-9.9
-7.9
-5.9
-4.8
-3.8
-1.8

.2
2.2
4.3
5.2
6.2
8.3

10.3

0.634

.631

.627

.622

.624

.624

.625

.625

.626

.628

.628
.628
.627

1.167
1.211
1.253
1.265
1.279
1.293
1.307
1.321
1.329
1.337
1.336
1.344
1.345

.311

.330

.338

.347

.365

.381

.387

.402

.404

.413

.421

.431

0.0231
.0189
.0170
.0159
.0145
.0095
.0064
.0042

-.0011
-.0026
-.0062
-.0098
-.0153

L/D

0.437
.409
.376
.359
.345
.317
.287
.252
.223
.205

.194

.160

.131

r

r
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TableVI. MeasuredAerodynamicCoefficientsin Air at Mach9.90

[Reoc= 1.04 x 106/ft; Re2, d = 17.66 x 103; d = 2.50 in.; and fl = 0 °]

a, deg

-9.8
-7.7
-5.6
-4.7
-3.6
-1.7

0.4
2.3
4.5
5.4
6.3
8.5

10.5

qc_, psi

1.191
1.191
1.191
1.193
1.192
1.194
1.192
1.191
1.193
1.194
1.194
1.192
1.193

cA
1.189
1.237
1.268
1.285
1.296
1.315
1.332
1.340
1.348
1.359
1.355
1.358
1.359

CN Cm L/D

0.284
.312
.334
.338
.352
.365
.375
.390
.401
.408
.407
.424
.435

0.0233
.0198
.0160
.0161

.0137

.0112

.0092

.0051

.0006
-.0001
-.0036
-.0096
-.0157

0.430
.401
.370
.353
.341
.309
.274
.248
.215
.200
.183
.156
.128

Table VII. Measured Aerodynamic Coefficients in Air at Mach 10.05

[Re_ = 2.13 x 106/ft; Re2, d = 49.83 x 103; d = 3.67 in.; and/_ = 0°]

a, deg

-9.9
-7.9
-5.9
-4.8
-3.8
-1.8

0.4
2.2
4.2
5.2
6.2
8.2

10.2

qcc, psi

2.26
2.27
2.28
2.28
2.29
2.29
2.29
2.29
2.29
2.29
2.29
2.29
2.30

CA

1.188
1.222
1.256
1.275
1.283
1.303
1.317
1.328
1.336
1.342
1.345
1.345
1.344

CN
0.289

.308

.328

.338

.344

.360

.376

.386

.399

.404

.411

.421

.432

Cm

0.0226
.0194
.0165
.0142
.0142
.0119
.0085
.0047

-.0002
-.0033
-.0058
-.0114
-.0176

L/D

0.436
.404
.374
.358
.341
.311
.279
.250
.221
.204
.191
.162
.135
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Table VIII. Measured Aerodynamic Coefficients in Air at Mach 5.94

[Re_ = 0.62 x 106/ft; Re2, d = 30.42 x 103; d = 3.67 in.; and j3 = 0°]

_, deg q_c, psi CA CN Cm L/D

-10.1

-7.0

-5.1

-2.9

0

3.0

5.1

7.1

10.1

0.534

.477

.534

.529

.521

.474

.519

.531

.485

1.201

1.258

1.282
1.303

1.327

1.351

1.353

1.359

1.368

0.292

.326

.342

.357

.377

.397

.407

.418

.434

0.0256

.0204

.0164

.0138

.0081

.0026

-.0027
-.0075

-,0152

0.440
.395

.363

.329

.285

.238

.207

.177

.132

Table IX. Measured Aerodynamic Coefficients in Air at Mach 5.94

[Reoc = 2.20 x 106/ft; Re2,d = 106.51 x 103; d = 3.67 in.; and _q = 0°]

a, deg

-9.9

-7.3
-5.0

-2.9

.2

2.9

5.2

7.2

10.2

qoc, psi

2.088

2.108
2.058

2.099

2.039

2.093

2.079

2.087

2.060

CA

1.206
1.244

1.281
1.296

1.327

1.336

1.353

1.350

1.362

CN

0.297

.322

.344

.357

.380

.394

.409

.417

.434

C7/_

0.0234

.0182

.0149

.0117

.0066

.0012

-.0038

-.0085
-.0163

L/D

0.440

.401

.365

.332

.283

.241

.206

.176

.131
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TableX. MeasuredAerodynamicCoefficientsin CF4at Math 6.28

[R%c= 0.46x 106/ft;Re2,d= 45.26x 103;d = 3.67 in.; and fl = 0°]

a, deg qoc, psi CA I CN Cm

Afterbody attached

L/D

-9.89

-5.06
-2.25

.01

1.96

5.16

9.94

0.95

.94

.94

.92

.94

.94

.96

1.214

1.315
1.366

1.401

1.429

1.455

1.452

0.276

.340

.374

.398

.418

.442

.464

0.0303

.0145

.0054

-.0015

-.0073

-.0141

-.0216

0.418

.355

.317

.284

.256

.208

.137

-10.3

-5.1

-2.1

--.2

5.1

10.0

0.95

.96

.94

.95

.94

.94

Afterbody detached

1.217

1.318

1.367

1.402

1.456

1.468

0.279

.341

.372

.395

.443

.466

0.0286

.0135

.0056

-.0008

-.0155

-.0230

0.429

.356

.313

.286

.209

.133

Table XI. Measured Aerodynamic Coefficients in CF4 at Mach 6.10

[Reoc = 0.46 x 106/ft; Re2,d = 30.83 x 103; d = 2.50 in.; and fl = 0 °]

a, deg

-10.0

-4.9

-2.0
--.1

2.0

5.2

10.0

q_, psi

0.971

.960

.960

.960

.960

.970

.940

CA
1.212

1.307

1.356
1.382

1.409

1.435

1.432

CN

0.286

.345

.378

.397

.416

.440

.462

CT_t

0.0265
.0123

.0031

-.0025

-.0079

-.0145

-.0229

L/D

0.429

.358

.316

.289

.258

.210

.139
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TableXII. MeasuredAerodynamicCoefficientsin Air at Mach9.74

[Recc= 0.53 x 106/ft; Re2, d = 9.20 x 103; d = 2.50 in.; and variable fl]

fl, deg ] qac, psi CA CN Cm L/D

0.352

.359

.358

a = -4.75 °

0.0 0.634 1.258
2.0 .630 1.258

4.0 .624 1.257

0.329

.336

.335

0.0148

.0141

.0143

0.0

2.0

4.0

0.0

1.9

4.0

0.622

.625

.628 "

1.318

1.317

1.303

0.27 °

0.373

.368
.380

5.29 °

0.628

.627

.629

1.339

1.337

1.333

0.0104

.0102

.0058

0.279

.275

.287

0.402 -0.0009 0.202

.400 -.0004 .201

.401 -.0019 .202

Table XIII. Measured Aerodynamic Coefficients in Air at Mach 9.90

[Rec_ = 1.05 x 106/ft; Re2, d = 17.83 x 103; d = 2.50 in.; and variable _]

fl, deg

0.0

2.0

4.1

0.1

2.0

4.1

0.1
2.1

4.1

qoc, psi

1.182

1.185

1.194

1.194
1.197

1.193

1.196

1.196

1.197

Ca CN

a = -4.67 °

1.277 0.354

1.274 .339

1.274 .340

1.326

1.322

1.326

1.355

1.351

1.352

a = 0.40 °

Cm LID

0.0139 0.367

.0141 .355

.0149 .357

0.376 0.0084 0.276

.376 .0085 .277

.375 .0091 .275

5.50 °

0.406

.407

.404

-0.0008

-.0015

-.0011

0.198

.199

.197
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Table XIV. Measured Aerodynamic Coefficients in Air at Mach 5.84

[Reoc = 0.63 × 106/ft; Re2,d = 29.36 x 103; d = 3.67 in.; and variable/3]

/3, deg

0.0
-2.0
-4.0

0.0
-2.0
-4.0

0.0
-2.0
-4.0

qoc, psi C A C N

a = -5.1 °

0.555 1.280 0.343
.534 1.298 .343
.540 1.285 .341

a = -0.1 °

0.543
.531
.535

1.311
1.335
1.320

0.533 1.363
.540 1.355
.546 1.346

0.379
.379
.377

= 5.3 °

0.409
.409
.408

Cm L/D

0.0169 0.365

,0165 .362
.0165 .363

0.0079 0.290
.0076 .285
.0078 ,287

-0.0031
-.0033
-.0035

0.202
.204
.205

Table XV. Measured Aerodynamic Coefficients in Air at Mach 5.94

[Recc = 2.21 x 106/ft; Re2, d = 106.99 × 103; d -- 3.67 in.; and variable/3]

#, deg qm, psi C A

0.0 2.107 1.286
-2.0 2.123 1.280
-4.0 2.131 1.270

0.0 2.064 1.334
-2.0 2.156 1.323
-4.0 2.136 1.312

0.0
-2.0
-4.0

= -5.0 °

C N Cm LID

0.344
.343
.340

a = 0.0 °

0.0146
.0146
.0147

0.363
.363
.363

a = 5.3 °

0.380
.377
.375

2.089 1.352 0.409
2.108 1.345 .407
2.112 1.336 .406

0.0066
.0067
.0065

0.284
.284
.285

-0.004
-.0039
-.0042

0.205
.205
.206
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a, deg

-9.9

-5.1

--,1

5.0

10.0

Table XVI. Measured Aerodynamic Coefficients in CF4 at Mach 6.29

[Reoc = 0.45 x 106/ft; Re2,d = 44.19 x 10a; d = 3.67 in.; and/3 = 3.5 °]

q_c, psi

0.970

.910

.950

.940

.950

CA

1.216

1.310

1.386

1.438

1.447

CN

0.277

.336

.392

.437

.463

0.0297

.0157

-.0001

-.0129

-.0214

L/D

0.419

.354

.284

.211

.137
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Figure 1. Sketch of AFE flight vehicle configuration.
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Figure 2. Development of AFE configuration from original elliptic cone. Symmetry plane shown.
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Figure 6. Indication of accuracy due to digitizing process in Langley 20-Inch Mach 6 Tunnel.
Reoc = 0.6 x 106/ft in air.
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Figure 9. Continued.
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